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Gravitational Instability:
An Approximate Theory for Large Density Perturbations
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An approximate solution is given for the problem of the growth of perturbations during the expansion of
matter without pressure. The solution is qualitatively correct even when the perturbations are not small.
Infinite density is first obtained on disc-like surfaces by unilateral compression.

The following layers are compressed first adiabatically and then by a shock wave. Physical conditions in the

compressed matter are analysed.
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1. The Approximate Solution

The linear theory of perturbations, applied to the
uniform isotropic cosmological solution, is now well
understood. It is generally admitted that its predic-
tions are limited by dg/¢ < 1, and that further events
must be followed by numerical caleulations. Such
calculations, in three dimensions and with random
initial conditions, promise to be tedious. Therefore
an approximate method, which gives the right answer
at least qualitatively, is of interest.

In this article the linear theory is taken to formu-
late the answer in terms of lagrangian coordinates:
the actual position r of a particle is given as a function
of its lagrangian coordinate g (i.e. its initial position)
and the time ¢, r =1 (f,q). The linear theory is
applied to the simplest case of pressure # = 0 (“‘dust’)
in the Newtonian approximation. Only the growing
perturbations are considered. The answer is of the
form

r=a(lt)q+b(t)p(q). 1)

The first term a(t) @ describes the cosmological
expansion; the second term describes the perturba-
tions. The functions a(f) and b(t) are known; b(¢) is
growing more rapidly than a(t), as a result of gravita-
tional instability. The vector function p(q) depends

1) Tt can be shown that g—zq" = 3—5" in the growing mode

k i
of perturbations. Here ¢ = &, f = &,, and y = &; are the
three roots of %’5‘-+ ea‘,,l=o. The sign of «, B, y is not
1

defined in the usual manner, for the sake of subsequent
convenience.

on the initial perturbation. With given »(t, q), it is
possible to calculate the distribution of velocity and
density in space; r(f, q) contains the whole picture
of the motion.

The approximation proposed in this article con-
sists in the extrapolation of formula (1) into the
region where the perturbations of density do/o are
not small.

Let us first investigate the consequences of the
approximation; this will help us to analyse its plausi-
bility. In order to follow the behaviour of a small
group of particles centered on some definite q, we
calculate the tensor of deformation

b 0
D = gr = 0(t) . + D) 5o -

The derivatives 3—5:— define a set of fundamental axes.

After choosing the coordinate system along the axes,
one obtains?) for a given g

alt) — ab(t) 0 0
D= 0 a(t) — Bb(®) 0 .
0 0 at) — yb(t)

A volume which was initially a cube (at £ - 0) and
which would be a cube in the unperturbed motion, is
transformed into a parallelepiped. One can always
choose the axis of the cube so that it is transformed
into a rectangular parallelepiped; the axes are not
rotating in solution (1). The density near a particle
with given q is given by the conservation of mass

e(@ — abd) (a — Bb) (@ — yb) = ga®. 2)
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We recall that e, § and y are functions of the point q';
a(t) and b (t) are the same for all particles. If «(q) > 0,
one can specify the moment when p—> oo by af(f)
— oab(t) = 0. In a given q volume, we find the point
where « has its highest value a,, ; thislocatesthe particle
in which the density first goes into infinity, at some
time ¢, for which a(t,) — «,, b(¢,) = 0.

The most important point to be emphasized is
that infinite density results from unilateral com-
pression in the direction of the a-axis. The probability
of the coincidence of « and B, or of a triple coincidence
o= f =y, is zero.

The picture is very different from a spherically
symmetric (SS) compression. The SS case was con-
sidered due to its simplicity ; I think that it is degener-
ate and not typical of the general case of random
initial perturbations. Later, at ¢ > ¢,, formula (2) is
not applicable to particles which have gone through
o = oo; the matter stays compressed. But we feel
that it is still possible to apply (1) and (2) to other
particles. By continuity, particles with high e,
o — 0 L oty,, surround the ‘“‘maximal” particle,
lying on some triaxial ellipsoid. The direction of the

fundamental axis of % also varies slowly, so that

the o direction is nearly the same as long as o is
near «,,.

The unilateral compression makes the three-
dimensional ellipsoid in g-space into a flat two-
dimensional ellipse in the real r-space. The volume
density g is infinite, but the product of g times the
width [ (equal to the density per unit of surface ¢) is
finite on this ellipse.

2, Comparison of Various Approximations

Let us return to the motivation of (1), on which
the picture proposed is based.

In the linear approximation, there are other
formulations, for example

e =20 (1+108(5)),  ®

with known f(t), a (f) and d given by the initial condi-
tions. Why should one prefer (1) to (3)? The pro-
posed solution (1) always gives finite velocity and
finite acceleration for a particle, up to the moment
when this particle is splashed against other particles,
giving ¢ = co. Matter with infinite density g forms
discs with finite density o. But by the properties of
gravitational potential, p = o0, 0 & oo gives a finite
potential and a finite acceleration. The approximation
proposed is exact at one extreme, when the perturba-
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tions are small. But the approximation gives only a
finite error at the other extreme, when g = oo.

This is in contrast with (3): if one attempts to
extrapolate (3), meaningless negative densities are
predicted for some parts of the volume § < — f~1,
while in other parts the density is only doubled.

The better performance of (1) as compared with
(3) can be traced back to the fundamental equations.
The solution (3) corresponds to equations written in
eulerian form. During linearisation, terms div (v d)
and (v V)v are neglected, where 6 =dpfp, and
v = u — Hris the peculiar velocity.

By adopting solution (1), we adopt a law of
motion for every particle:

N . d . .
u=aq+bp(@); Gr=dq+bp@). @

Given formula (1), the density is calculated exactly.

The only error is in the use of the perturbation of
gravitational force §F, acting on a particle g, where
{6F) is linearised as a function of the perturbation
of position of the particle considered bp(q), and of
all other particles with differing dp(q’). The analytic
evaluation of the error is extremely difficult.
Djachenko proposes to make a numerical estimate
of the error, by taking solution (1) with a definite
p(q) at a definite moment ¢, calculating the actual
distribution of p(r,t), the gravitational potential
¢ (r, t) and the force F (r, t), and comparing this force
with the acceleration given by (4) for the approximate
solution. As long as this trial is not made, the real
accuracy of the solution for perturbations of different
amplitude is unknown. Still, the main qualitative
conclusion about the unilateral type of compression
seems to be inescapable.

The compression is due to gravitational interac-
tion: it is due to gravitation that b(f) grows faster
than a(f) in (1). The initial excess of density near
some particle g, increases because other particles are
attracted to q,. But solution (1) and expression (2)
for the density also take into account the tidal forces
from neighboring perturbations which destroy the
spherical symmetry of compression. At small ¢ and
small §p/p formula (2) coincides with (3):

0@ =0 (1+@+f+ 9 2) e+ 8@/ ). ©)

The initial growth of the perturbation depends only
on the sum « + B + y = S(q). But later, as shown
by (2), all three parameters «, § and 9 are of impor-
tance. Therefore (1) and (2) contain more information
than (3). The later non-linear behaviour of the density
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is not uniquely determined by the initial density
amplitude in the linear period; it also depends on the
spatial distribution of velocity and density in neigh-
bouring regions, on which e, f, and y depend. This
important point is overlooked if one takes the spheri-
cally symmetric case as a model for the nonlinear
situation.

3. Astronomical Implications

Assuming that the approximate solution is quali-
tatively true, we must discuss a) whether the neces-
sary conditions (£ = 0, newtonian approximation)
are fulfilled, b) what physical processes occur in the
compressed regions, and c) the place of the solution
in the problem of the structure of the Universe. The
answer to a) depends on the type of initial perturba-
tion. Widely discussed are adiabatic perturbations,
characterised by iTIL = % 6—: before recombination.
As shown by Silk (1967), the photon viscosity
eliminates perturbations of small scale (M < 102 M ;)
On the other hand, it is plausible that the spectrum
is decreasing for greater scale. Therefore the pertur-
bations with M ~ 102 M, are the most important.
We apply the approximate theory to the period after
recombination, assuming that the perturbations are
small at Z = 1400 (just after recombination) and
grow so that galaxies, etec., are formed before Z = 0
(the present day).

After recombination, the Jeans’ mass (depending
on the neutral gas pressure) is of the order of
M;= 105 — 108 M, (Doroshkevich, Zeldovich and
Novikov, 1967; Peebles and Dicke, 1968). The situa-
tion M =102 M, > M; means that pressure can
safely be neglected. At the moment of recombination
the event horizon (the sphere with r = ct) contains
M,=10® M, so that M < M,. Therefore new-
tonian theory is applicable. The inequalities are
even better fulfilled later on at Z < 1400, because M ;
diminishes and M, grows during further expansion.

b) Now we turn from the premises to the con-
sequences of the approximate solution. To study the
characteristic unilateral compression, we neglect the
motion in other directions and consider the uni-
dimensional problem. The subsequent evolution is
shown in three figures: 1 —for small perturbations
(t <t,), 2 —for the moment when g just attains in-
finity on the line considered (¢ = ¢,), and 3 —for ¢ > ¢,.
On each figure the curve r = f(q) is given. To be
precise, it is r, as a function of g¢,, the z-axis being
chosen in the direction of maximal deformation.
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The quantity of matter between a pair of points
is proportional to g, — ¢;, because g is the lagrangian
coordinate. In the physical (r) space it is contained
in the strip 7, — r,; therefore the density g is pro-

— -1
portional to z’ g‘ - (:—;) ; this is the unidimen-
2 N
sional simplification of formula (2). In Fig. 2 the curve
has a point with a horizontal tangent. When sucha

. . d
point occurs for the first time, we must have —‘% =0,
d?r

—d—q;=0 at t=1t,;q=q,.
Expanding r(g) near g, it is easy to obtain

e~ (%35) @—-g)%r=r.+ % (3—;:) @ - ¢.)*

Thus g ~ (r — 7,)~%3 when t = ¢,.

Going to Fig. 3 one would obtain g = oo at points of
maximum (¢,) and minimum (g,) by formal applica-
tion of the formulae. But the particle ¢, cannot reach
the 7,z shown on the curve;to do this, it would have
to jump over the particle g.. Suppose that the
density of the disc is infinite: then all particles
reaching r = r, will abruptly come to a standstill by
encounter with the disc. But this produces a receding
shock-wave. In the encounter, the kinetic energy of
relative motion is transformed into heat. The matter
is no longer cold ; its density is just 4 times the density
before the shock. As t —t, grows, the velocity of
impact grows ~ |/t — £, but the density of matter
going into the shock decreases as (¢ — #,)~'. The
pressure ~ gu? remains constant in the first approxi-
mation (this means that there is no power dependence
ont—1t,).

Some physical quantities are evaluated below for
the case £ = 1. The linear scale of the perturbations
is given by the corresponding characteristic mass J/,
and the amplitude of the perturbations by the
moment £, or the corresponding redshift Z,. Only
orders of magnitude are given; detailed calculations
are postponed to a comprehensive paper to be pub-
lished in ““Astrophysica” (edited in Erevan, USSR).
The surface matter density gg/cm? is given by

o =104 (gags ) (L+ 2P (2, — 2y,

The impact velocity v(cm/s) is
v=10" (M/10® M B/ Z,— Z.
The pressure in the compressed matter is given by

P =2.5+10"18 (1 + Z,)* (M/10'2 M ,)2/3.
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v

The maximum density (in the adiabatically com-
pressed matter) is

Omax = 4 + 1025 (1 + Z,)12/5 (M]10%2 M )?/5.

Minimum density corresponds to the pressure given
above and a temperature of the order of 5000° — at
higher temperatures the radiation energy losses are
great and the temperature drops. This gives

Omin = 5+ 10-28 (1 + Z,)% (M/10%2 M ,)2P3.
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Fig. 3. The ordinate of the maximum of the curve is 7.y,
that of the horizontal segment is 7,

For
M=10*M,, Z,=4 and ¢,=1.5-10's,
we have
Omax = 21023, g =3-10-%,

Evaluating the formation of star with the Schmidt
formula (Schmidt, 1959) one obtains a negative result,
the time needed being greater than ¢,.

The stars are formed at a later stage and not
simultaneously with the disc

c) In the most favourable case, the approximate
solution describes a definite part of the evolution. But
it is certainly not intended to cover the whole theory
of formation of galaxies. The discs are not in equi-
librium. The deformation in the plane of the discs,
given by the parameters § and y (2), occurs in both
directions. Nearly half of the matter, compressed in
the discs, is not gravitationally bound.

It seems that the formation of discs is an unavoid-
able result of a definite set of assumptions about the
initial perturbations. But even if this hypothesis is
confirmed, it is difficult to predict how much of the
discs would remain in the structure of near-by con-
temporary galaxies.

Another problem as yet unsolved, is the possible
application of the hypothesis to fluctuations of
entropy, i.e., fluctuations of matter density at con-
stant temperature. It is assumed that the spectrum
is decreasing, so that after recombination the most
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important fluctuations are those on the scale of the
Jeans’ mass (105108 M ;). On this scale the gas
pressure is important and the approximate solution
is inapplicable. Pressure works against the unilateral
compression ; the formation of protostars (Doroshke-
vich, Zeldovich and Novikov, 1967) or globular
clusters (Peebles and Dicke, 1968) is plausible. But
nevertheless the fluctuations of greater scale remain,
and for them the gas pressure is negligible.

On a greater scale the fluctuations are smaller;
therefore they lead to condensation later, after the
globular clusters are formed. The question is, what
part of the matter has gone into globular clusters ?
Do they now heat the remaining gas? And finally:
should one apply the approximate solution to the
““gas’’ whose atoms are globular clusters or protostars
or small gas clouds ?

4. Mathematical Appendix

Explicit formulae can be given for the functions
a(t) and b(¢) of (1). It is convenient to take as inde-
pendent variable the redshift Z instead of the time.
These are connected by

oL f az
“HJ avar Vit ez’ (A1)
where H, is the present value of the Hubble para-
meter ~ 100 km/s megaparsec.

It is easy to make the integration

V14 Q2 Q

T—9)(1+2) 20 —Qp=

Vi¥ez+)i—2
i+ez-jyi—a’

Hyt=

(A.2)

but to extract the limiting cases (2 =0, or Q =1,
or 2 <1, QZ > 1 ete.) it is better to use the integral
directly.

The function a(t) (see (1)) is replaced by

a(Z) = (A3)

1
14+2% -~
The lagrange variable q is defined by (A.3) so that it
coincides with 7 in the case of unperturbed motion
at the present time (Z = 0). The growth of perturba-
tions is given by

a iz
b(2) =1+ QZ . (A
@=y1+Q Zf Croryarazr s Y
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We recall that Z decreases with increasing time. For
0 =1 (flat universe)

t=2/3Hyl(1 + Z)-%2; a(Z)=1/1+ Z=(3/2 H,t)**
and (A.5)
b(Z) = 2/5 (1 + Z)-2 = 2/5 (32 H,t)4.

For 2 <1, the growth of perturbations effectively
stops at Z ~ 1/02; for the ratio b(t)/a(t) or b(Z)/a(Z)
increases more slowly than a power of (1 + Z)-!
when Z decreases after Z = 1/9. For the sake of com-
pleteness, the second (damped) mode of perturbations
is given:

b3(2) =)14+ QZ=—= -5 (A.6)
The perturbations are given in terms of displace-
ments (r), but not the usual dg/g; from (2), it is clear
that dpfo ~ bla ~ f(t) in the linear stage. All ex-
pressions given above are written for matter without
pressure after recombination, Z < 1400. If Q2 < 0.03,
the density of radiation remains greater than the
matter density for some time after recombination
and the gravitational action of radiation changes the
expansion law d(f) or a(Z) and the perturbation
law b(Z); bs(Z) is also changed in the interval
1400 > Z > 40000 Q2.

Suppose that at the moment of recombination,
Z =Z, = 1400, the perturbations are given by
Se _ é(r), v =v(r). They are assumed to be small;
for simplicity the case £ > 0.03 is considered.

To obtain the function p(q) of (1), it is advisable
to work with Fourier decomposition. First we trans-

form from r to g by r=aq=1—£7(here at Z,
perturbations can be neglected).

Having constructed §(q) and v(q) (all for ¢t =¢,,
Z =27, at the moment of recombination), we de-
compose them:

0(q) = [ o(k) ev*d3E,
v(q) = [ (nv, (k) + L v (k) + 1, v; (k) €2 *d2 E,
(A7)

where

n=—I’,:—,,ll_Ln,l2_Lllandlz_|_n.

v, is the longitudinal component and v; and v;’ the two
transverse components of the velocity. The growing
perturbation is given at Z, by Doroshkevich and
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Zeldovich (1963) as:

8y(k) = > (3(k) + i K] vy () (1 + Z,),
. (A.8)
0, (k) =g (”"") + lkl:f(f-)'z.)) .

The displacement corresponding to the growing mode
(taking into account the fact that 2Z, > 1) is given
by

r—ag=[o(g0dt=70@0t=bp@ (A9

Because v, ~ 1/3 and applying (1) to t = t,, we obtain

p(@) = [pk) L* Bk,
with (A.10)

t, 9 10 (K
P09 = 5355 75 m0ul) + Ty = P (0)-

The v; (k) and 6 (k) without indexes are taken at ¢ = ¢,.
After neglecting the transverse displacement (even

if v~ v ~ 9" at =1, thereafter v, grows while v,
and v, decrease), p(q) is vortex-free:

k, k,

p: f”z ky (k) eiq.kds,c____f 0

og,

(A.11)
. 29,
- (k) 9% d8 =%.

Therefore p(q) can be written as the gradient of a
scalar function &(q):

p(q) = grad, £(q), (A.12)

with the Fourier image £(q) = ﬁn(k).

It can be shown that the peculiar velocity given
by the approximate solution is also vortex-free in
physical space, as a function of the eulerian (r) co-
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ordinates. So is the Hubble velocity, and therefore
the total velocity also. The exact solution has this
property because the motion occurs under the action
of gravitation — a force with potential. The approxi-
mate solution has this property even when the per-
turbations are not small (r — aq not neglected). This
is one more argument in favour of the approximate
solution. With a gaussian probability distribution of
4(q),v(q), and the Fourier-components of 4, v and ¥,
the distribution of «, # and y defined by (2) is not
gaussian. As found by Doroshkevich,

W, B, y)~ (@—B)(@—7y)(B—7)

. (A.13)
rexp{— mi[a® + B + % — 5 (@B +ay+By)]}-
The probability that all of them are positive
(¢>pB>y>0) is 8%, and the probability that
> f > 0> yis 42%,; by symmetry, there is a 429,
probability that «>0>pf>y, and 8% that
0>a>f>y.

GratitudeisduetoV.F.Djachenkoand A. G. Doroshkevich
for valuable ideas and discussion and to V. Chechetkin for
help.
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